Unsupervised Clustering of Multivariate Time Series Microarray Experiments based on Incremental Non-Gaussian Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Clustering in Time Series Microarray Analysis

A challenging task in time series microarray data analysis is to identify co-expressed groups of genes from a large input space. The overall objective of this study is to obtain knowledge about the most important genes and clusters related to production and growth rate in a real-world microarray data analysis task. Various measures are engaged to evaluate the importance of each gene and to grou...

متن کامل

Incremental Unsupervised Time Series Analysis Using Merge Growing Neural Gas

We propose Merge Growing Neural Gas (MGNG) as a novel unsupervised growing neural network for time series analysis. MGNG combines the state-of-the-art recursive temporal context of Merge Neural Gas (MNG) with the incremental Growing Neural Gas (GNG) and enables thereby the analysis of unbounded and possibly infinite time series in an online manner. There is no need to define the number of neuro...

متن کامل

Greedy Gaussian Segmentation of Multivariate Time Series

We consider the problem of breaking a multivariate (vector) time series into segments over which the data is well explained as independent samples from a Gaussian distribution. We formulate this as a covariance-regularized maximum likelihood problem, which can be reduced to a combinatorial optimization problem of searching over the possible breakpoints, or segment boundaries. This problem is in...

متن کامل

A multistep unsupervised fuzzy clustering analysis of fMRI time series.

A paradigm independent multistage strategy based on the Unsupervised Fuzzy Clustering Analysis (UFCA) and its potential for fMRI data analysis are presented. The influence of the fuzziness index is studied using Receiver Operating Characteristics (ROC) methodology and an interval of choice, around the widely used value 2, is shown to yield the best performance. The ill-balanced data problem is ...

متن کامل

Iterative Incremental Clustering of Time Series

We present a novel anytime version of partitional clustering algorithm, such as k-Means and EM, for time series. The algorithm works by leveraging off the multi-resolution property of wavelets. The dilemma of choosing the initial centers is mitigated by initializing the centers at each approximation level, using the final centers returned by the coarser representations. In addition to casting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Contents

سال: 2012

ISSN: 1738-6764

DOI: 10.5392/ijoc.2012.8.1.023